Dynamic Conditional Correlation – a Simple Class of Multivariate Garch Models
نویسنده
چکیده
Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models coupled with parsimonious parametric models for the correlations. They are not linear but can often be estimated very simply with univariate or two step methods based on the likelihood function. It is shown that they perform well in a variety of situations and provide sensible empirical results. 1 This research has been supported by NSF grant SBR-9730062 and NBER AP group. The author wishes to thank Kevin Sheppard for research assistance, and Pat Burns and John Geweke for insightful comments. Thanks also go to seminar participants at New York University, UCSD, Academica Sinica, Taiwan, CNRS Montreal, University of Iowa, Journal of Applied Econometrics Lectures, Cambridge, England, CNRS Aussois, Brown University, Fields Institute University of Toronto, and Riskmetrics.
منابع مشابه
Dynamic Conditional Correlation – a Simple Class of Multivariate Garch Models By
Time varying correlations are often estimated with Multivariate Garch models that are linear in squares and cross products of returns. A new class of multivariate models called dynamic conditional correlation (DCC) models is proposed. These have the flexibility of univariate GARCH models coupled with parsimonious parametric models for the correlations. They are not linear but can often be estim...
متن کاملDynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models
Time varying correlations are often estimated with multivariate generalized autoregressive conditional heteroskedasticity (GARCH) models that are linear in squares and cross products of the data. A new class of multivariate models called dynamic conditional correlation models is proposed. These have the exibility of univariate GARCH models coupled with parsimonious parametric models for the c...
متن کاملModelling price and volatility inter-relationships in the Australian wholesale spot electricity markets
a r t i c l e i n f o JEL classification: C32 C51 L94 Q40 Keywords: Wholesale spot electricity price markets Constant and dynamic conditional correlation Multivariate GARCH This paper examines the interrelationships of wholesale spot electricity prices among the four regional A multivariate generalised autoregressive conditional heteroscedasticity model with time-varying correlations. Dynamic c...
متن کاملDynamic Cross Hedging Effectiveness between Gold and Stock Market Based on Downside Risk Measures: Evidence from Iran Emerging Capital Market
This paper examines the hedging effectiveness of gold futures for the stock market in minimizing variance and downside risks, including value at risk and expected shortfall using data from the Iran emerging capital market during four different sub-periods from December 2008 to August 2018. We employ dynamic conditional correlation models including VARMA-BGARCH (DCC, ADCC, BEKK, and ABEKK) and c...
متن کاملAverage Conditional Correlation and Tree Structures for Multivariate GARCH Models
We propose a simple class of multivariate GARCH models, allowing for time-varying conditional correlations. Estimates for time-varying conditional correlations are constructed by means of a convex combination of averaged correlations (across all series) and dynamic realized (historical) correlations. Our model is very parsimonious. Estimation is computationally feasible in very large dimensions...
متن کامل